
Synthesis and bio-assay of RCM-derived Bowman–Birk inhibitor
analogues†

Steven M. Miles,a Robin J. Leatherbarrow,*a Stephen P. Marsden b and
William J. Coates c

a Department of Chemistry, Imperial College London, South Kensington Campus, London,
UK SW7 2AZ

b School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
c GlaxoSmithKline, Third Avenue, Harlow, Essex, UK CM19 5AW

Received 15th October 2003, Accepted 16th December 2003
First published as an Advance Article on the web 24th December 2003

Bowman–Birk inhibitor analogues containing 2, 3 and 4-
carbon analogues of the natural disulfide were synthesised
via solid phase microwave-assisted RCM and found to
have Ki values against chymotrypsin in the low to sub-
micromolar range, the best replacement for the disulfide
arising from the linkage by RCM of two L-homoallyl-
glycine residues.

Cyclic peptides and their derivatives are of great importance
as potential drug candidates as they often exhibit enhanced
stability and activity relative to their linear counterparts.1 In
recent years, there has been an explosion of interest in the use
of ring closing metathesis (RCM) to synthesise conform-
ationally constrained cyclic peptides.1b,2 Our interest in cyclic
peptides is concentrated around the Bowman–Birk inhibitors 3

(BBI), naturally-occurring serine protease inhibitors with
nine-residue disulfide-constrained loops of peptide that are
responsible for inhibitory activity. It is well known that syn-
thetic nine-residue-cyclic peptides based on the BBI loop
sequence retain much of the loop structure 4 (a β-hairpin with
type VIb turn) and activity 5 of the parent BBI, whereas the
linear analogues are relatively inactive.5c One example of a
synthetic mini-inhibitor is the cyclic disulfide 1 (Table 1), iden-
tified within our group from a solid phase combinatorial
peptide library and found to have an equilibrium dissociation
constant (Ki) against chymotrypsin of 19 nM.5b We wondered
whether the disulfide could be replaced with an all-carbon
link via RCM of a linear dienic peptide in which the flanking
cysteine residues are replaced with olefin-containing residues
such as -allylglycine.6

In initial studies, we assembled resin-bound dienic peptide
2a 7 from Fmoc-Tyr(tBu)-Wang polystyrene resin using
standard Fmoc methods and found that the desired RCM
proceeded with Grubbs’ second generation ruthenium benzyl-
idene catalyst in dichloromethane. The reaction could be
carried out at reflux or, more efficiently, at 120 �C under micro-
wave irradiation conditions to give cyclic peptide 3a 8 upon
deprotection and cleavage (Fig. 1).

RCM has recently been reported under microwave irrad-
iation conditions for small molecules,9 but to our knowledge
this is the first report of microwave-assisted RCM of a peptide,
and also the first such report for a resin bound substrate.10

Encouraged by this success, we then turned our attention to the
synthesis of a small array of inhibitor analogues whereby the
length and stereochemistry of the all-carbon link was varied.
This was accomplished simply by replacing one or both of
the -allylglycine residues in the linear diene precursor with

† Both single letter and three letter amino acid codes are used in this
communication.

either -allylglycine or -homoallylglycine. In particular when
-allylglycine was incorporated we found the use of our
microwave-assisted conditions to be essential to drive the
sluggish metathesis reactions towards the cyclised products.11 In
two examples, the olefin in the cyclic product was hydrogenated
by diimide reduction 12 on solid phase 2f to furnish the saturated
analogue. With the array in hand, we conducted competitive

Table 1 Inhibition assay results for peptide array against chymo-
trypsin

Entry Peptide Ki/µM

1  1 0.016 a

2  4a 11

3  3a 0.49

4  3b 0.68

5  3c 0.12

6  3d 2.4

7  3e 30

8  3f 2.2

9  3g 2.9

10  3h 1.0

a Literature value 0.019 µM.5b 
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inhibition assays 13 against chymotrypsin to determine Ki values
for the inhibitors (Table 1).

For potent activity it was necessary to cyclise the peptides,
with the linear analogue 4a showing only weak inhibition
(entry 2). The best RCM-derived inhibitors were cyclic olefins
with the same linker stereochemistry as that found in the
natural BBI sequences (entries 3–5). Of these, the 31-membered
macrocycle 3c was the most potent, with 7.5-fold less activity
than the parent 29-membered macrocyclic disulfide (entry 1).
Since RCM-derived cyclic peptides 3a–f are assumed to be a
mixture of olefin E and Z isomers,8 the true potency of these
compounds in an isomerically pure form may be significantly
greater than that quoted in Table 1, if the other isomer is
less active. It appears from the assay results that of those tested,
the six-carbon olefinic link represents the best isosteric
replacement for the disulfide-containing link of the parent.
Altering the stereochemistry of the all-carbon link was found
to greatly reduce inhibitory activity (entries 6–8), presumably
due to destabilisation of the active inhibitory conformation.
Hydrogenation of the double bond also led to a marked
reduction in inhibition (entries 9–10), perhaps due to bond
lengthening and/or extra flexibility producing a less optimal
conformation.

Despite the wide application of RCM to cyclise peptides,
there are few reports to date of the biological activity of
RCM-derived cyclic peptidomimetic inhibitors. Therefore the
inherent usefulness of the RCM reaction for this purpose and in
particular for the replacement of a disulfide bridge remains
largely unanswered. Of the reports that exist,15 the results are
in agreement with this study in that RCM was found to
significantly improve biological activity compared to the linear
counterpart 15b although some of this improvement was lost
upon hydrogenation to the saturated cyclic compounds,15a,15c

which had markedly lower activity than the cyclic olefins in
each case. However it must be emphasised that these reports are
for different biological systems than that presented in this
communication.

In summary, we have developed novel microwave-assisted
solid phase RCM methodology for the synthesis of 29–31
membered macrocyclic peptidic inhibitors of varying stereo-
chemistry. The use of microwave irradiation to promote the
RCM reaction is novel for both a peptide substrate and a resin
bound substrate. The RCM-derived inhibitors were found to
have Ki values in the low to sub-micromolar range in competi-
tive assays against chymotrypsin. To our knowledge this is
the first account of inhibition data for a sizeable array of
RCM-derived cyclic peptidic inhibitors.
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the enzyme was taken as 21 µM.14
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